6 Şubat 2019 Çarşamba

Ebob Ekok Nedir?



Ortak bölen veya ortak kat kavramları bir birinden farklı en az iki doğal sayı için söz konusudur.

1. Ebob (En Büyük Ortak Bölen)

Birbirinden farklı en az iki doğal sayıyı birlikte bölebilen en büyük doğal sayıya bu sayıların en büyük ortak böleni denir ve ebob ile gösterilir.

2. Ekok (En Küçük Ortak Kat)

Birbirinden farklı en az iki doğal sayıya birlikte bölünebilen en küçük doğal sayıya bu sayıların en küçük ortak katı denir ve ekok ile gösterilir.
Örnek:

Bölme Bölünebilme Nedir?




A) Bölme

Bölme işlemi
Bölme işleminde;
A = B.C + K  biçiminde gösterilir.
Bir bölme işleminde;
  1. K < B dir.
  2. K = 0 ise A sayısı B sayısına tam olarak bölünür.
  3. Kalan bölümden küçük ise bölen ile bölümün yerlerinin değiştirilmesi kalanı değiştirmez. 


A, B, c, d, e, f, birer tamsayı olmak üzere,
  • A nın c ile bölümünden kalan e,
  • B nin c ile bölümünden kalan d ise,
  • A + B nin  c ile bölümünden kala e + d,
  • A - B nin c ile bölümünden kalan e - d,
  • A.B nin c ile bölmünden kalan e.d,
  • An nin c ile bölümünden kalan en,
  • Kalan c den büyükse c ye tekrar bölünmelidir.
  • Kalan negatifse kalana pozitif olması için c nin katları eklenmelidir.
Örnek:

Çarpanlara Ayırma Konu Anlatımı



Matematiğin en önemli konularından birisi çarpanlara ayırma konusudur. Bir konu olmanın ötesinde diğer konularda işlem yaparken de sürekli bu konuda öğrendiklerimize ihtiyaç duyarız. Aslında çarpanlara ayırma bir konudan çok bir matematik becerisidir. O yüzden bu konuyu çok iyi öğrenmek gerekir.
Aşağıda konuyu detaylı bir şekilde anlatmaya çalıştık. Anlatılanları dikkatli bir şekilde okumaya özen gösterin. Ardından da konuyla ilgili çok test çözmeye çalışın. Çünkü bu konuyu iyi bilmezsek diğer matematik konularında da zorlanırız.

Modüler Aritmetik Nedir?


Z = {..., -3, -2, -1, 0, 1, 2, 3, ... } kümesinde tanımlanan
β = {(x,y) : m | (x - y), m Î Z- {1} ve x, y Î Z}
bağınıtısı denklik bağıntısıdır. β, denklik bağıntısı olduğundan, ∀ (x, y) Î β için x ≡ y (mod m) dir.
Diğer bir ifadeyle, x in m ye bölümünden kalan y ise modül m ye göre x, y ye denktir denir ve x ≡ y (mod m)  şeklinde gösterilir.
Örnek: